Electric potential profile of a spherical soft particle with a charged core.
نویسندگان
چکیده
The electrostatic potential profile of a spherical soft particle is derived by solving the Poisson-Boltzmann equations on a spherical system both numerically and analytically. The soft particle is assumed to consist of an ion-permeable charged outer layer and a non-permeable charged core with constant charged density. The contribution of the core to the potential profile is calculated for different charges and dielectric constants. Our results show that the charged core heavily influences the local potential within the soft particle. By contrast, the potential distribution outside the particle in the salt solution is found to be weakly dependent on the core features. These findings are consistent with previous experiments showing the minor impact of the core of the MS2 virus on its overall electrical properties. Our studies also indicate that while a change in temperature from 290 K to 310 K only slightly varies the potential, the ionic strength in the range of 1-600 mM has a significant effect on the potential profile. Our studies would provide good understanding for experimental research in the field of biophysics and nanomedicine.
منابع مشابه
Dielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملA Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer
Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-lin...
متن کاملElectric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium.
When an electric field is applied to an electrolyte-saturated polymer gel embedded with charged colloidal particles, the force that must be exerted by the hydrogel on each particle reflects a delicate balance of electrical, hydrodynamic, and elastic stresses. This paper examines the displacement of a single charged spherical inclusion embedded in an uncharged hydrogel. We present numerically ex...
متن کاملNonlinear effects on migration of charged spherical rigid/soft particle in an unbounded electrolyte solution
In this paper we have studied the migration of a colloidal particle under the influence of an external electric field in an electrolyte solution. The colloidal particle is considered to be rigid or a composite particle. The composite particle, the “soft particle”, consist an inner hard core coated with a concentric porous layer containing uniformly distributed fixed charges. Situations in which...
متن کاملBerry phase for a particle in an infinite spherical potential well with moving wall
In this paper we calculate the Berry phase for a wave function of a particle in an infinite spherical potential well with adiabatically varying. In order to do this, we need the solutions of the corresponding Schrödinger equation with a time dependent Hamiltonian. Here, we obtain these solutions for the first time. In addition, we calculate the Berry phase in one dimensional case for an infinit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 24 شماره
صفحات -
تاریخ انتشار 2013